evoltz (エヴォルツ)

地震・豪雨特集

小さな揺れでも地震の衝撃力を吸収 木造住宅用の油圧式制振装置

「evoltz」は、自動車用ショックアブソーバーの技術 をベースに開発された制振装置で、地震のエネルギー を吸収し耐震工法をアシストする。

世界有数の自動車メーカーがトップモデルとして選択 するビルシュタイン社が製造し、シリアルナンバーを 付与することで高性能、高品質を実現。

【特長】

①小さな揺れから確実に吸収

非常に小さな揺れの段階から地震の衝撃力を吸収し、 建物の揺れを45~55%軽減する。これにより構造部 材の損傷を阻止し、安全性を高めることで建築物の長 寿命化を図る。また、大地震の後に繰り返し発生する 大小の余震にも対応できる。

②「バイリニア特性」で3カ国で特許を取得

「バイリニア特性」とは、揺れの大小に関わらず減衰 力(振動を収束させる力)を発揮し、制振効果を最大 限に発揮する性能のこと。一般的な制振装置が揺れが 大きくなった時に効き始めるのに対して、本製品は揺 れ始めから地震のエネルギーを吸収する。この性能で 日本・アメリカ・ドイツの3か国で特許を取得してい

③共振時の最大振幅を抑制

5kNと大きな減衰力を持つため、建物が共振した際 の揺れ幅を小さくできる。また、縦揺れ時にねじれが 発生してもシャフトが回転することで性能を発揮する。

心臓部のオイルシールに宇宙開発技術を応用した 特殊樹脂シールを採用したことで、メンテナンス フリーで設計耐用年数60年を実現。

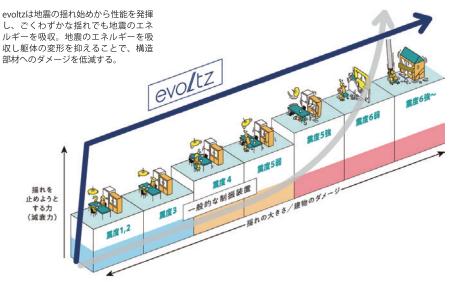
■配置イメージ

延べ床面積約35 坪の建物での標準 使用本数は6本。 最大効果・最適配 置となるように1 棟ごとに配置設計 を実施。

■各種性能試験による耐久性の実証

100万回の作動耐久試験を実施した結果、性 能の変化はほとんどなく、繰り返しの作動で も性能低下せずに振動エネルギーを何度でも 吸収することが実証された。また、温度試験 により使用環境温度領域-20~80℃に耐え、 変わらず性能を発揮することが確認された。

実験状況


問い合わせ先

株式会社evoltz TEL053-522-7766 https://www.evoltz.com/

evoltzシリーズの仕様比較

製品名	B5	M185	tw
製品写真			
全長 (mm)	2,200	1,850	2,000
外径 (mm)	ダンパー部50 (ブレース部38)		
重量(kg)	5.0	4.7	6.0
適用範囲	在来工法用	狭小住宅用	2×4工法用 (筋交い大型タイプ)
保証期間	10年		

■「バイリニア特性」概要図

80 リフォーム編2026 リフォーム編2026 81

evoltz (エヴォルツ)

■試験体について

試験体の上部には約6トンの荷重を加えた。これ は、延べ床面積30坪・総2階建ての住宅におけ る1階部分の負担重量の約1/3に相当する。この 状態で、耐震等級3に見合う壁量を設置し、加振 試験を実施した。

■試験方法

地震・豪雨特集

震度5強程度の地震波(BSL45)と、震度6強~ 7相当の地震波(BSL91)を交互に加え、計7回 の加振を行った。7回目終了時には、構造体の安 全性を確認した上で、より強い地震波ではなく、 震度5強相当の加振を実施した。

■試験結果

①耐震等級2:大地震1回で倒壊状態

1回目の加振時(震度5強程度)から損傷が始ま り、2回目の加振(震度6強~7程度)を行った 結果、安全限界を大きく超える変位が出たため、 この時点で実験中止となった。

②耐震等級3の試験体:大地震1回には耐える

震度5強程度→震度6強~7程度と進み、3回目 の震度5強程度の加振で損傷が大きくなり、4回 目の加振には至らなかった。

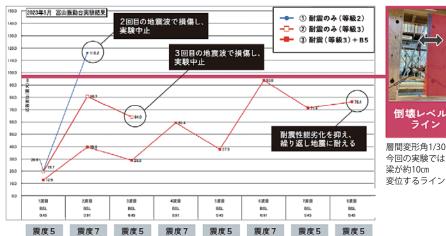
震度6強~7程度の大地震1回では倒壊ラインの 安全限界を超えず、揺れ幅を抑えて耐えることが できた。しかし、繰り返される大きな地震に対し ては合板の浮き、釘の折れ、変形が発生した。

公開実験の様子

耐震等級 3 +evoltz B5の試験体

耐震等級2の試験体で見られた変形した釘

実証されたevoltzの高い制振性能


③耐震等級3 +evoltz:

3回の大地震に耐えることができる

耐震等級2の試験体は1回の加振、耐震 等級3の試験体は3回の加振で損傷した のに対して、耐震等級 3 + evoltz B5の 試験体は、8回の加振にも耐えることが でき、さらに大地震相当の地震波にも3 回耐え抜いた。

この結果から、「地震波を吸収し、耐震 性能の劣化を抑え、繰り返しの地震に耐 える」という、evoltzの制振装置として の役割が明確に実証された。建物の倒壊 を防ぐ根幹はあくまで耐震構造が担い、 その性能を長く維持するために制振装置 が有効であるといえる。

	応答変位(最大)	
回数	耐震等級3	耐震等級 3 +evoltz
1波目 BSL45%(震度5強)	22mm	14mm
2波目 BSL91%(震度7)	65mm	36mm
3波目 BSL45%(震度5強)	52mm	25mm
4波目 BSL45%(震度5強)	54mm	51mm
5波目 BSL45%(震度5強)	56mm	32mm
6波目 BSL91%(震度7)	3回目の地震	70mm
7波目 BSL45%(震度5強)	波で損傷し、実験中止	50mm
8波目 BSL91%(震度7)		

倒壊レベルの ライン 層間変形角1/30rad 今回の実験では 梁が約10cm

問い合わせ先

株式会社evoltz TEL053-522-7766 https://www.evoltz.com/

82 リフォーム編2026 リフォーム編2026 83